

Rev.03C3.30_20230725

100G QSFP28 ZR4 Transceiver

Hot Pluggable, Duplex LC, LAN-WDM EML, SMF 80KM, DDM

Part Number: FQ28-K7-L13-80D

Applications

- 100GBASE-ZR4 Ethernet
- Data Centers Switch Interconnect
- Server and Storage Area Network
 Interconnect

Overview

FQ28-K7-L13-80D is a 4-Channel LWDM 1300nm QSFP28 transceiver for 100GbE applications especially in Datacom, Data Center & Storage networks. The transmitter converts 4-Channel 25G electrical input data to four LWDM optical signals and multiplex that into one 100G signal. The receiver de-multiplex the 100G signal reversely and converts that to 4-Channel 25G electrical output data. The techniques bring a compact transceiver module for an aggregate bandwidth of 100Gbps up to SMF 80km optical links.

Features

- Compatible with IEEE802.3ba 100GBASE-ER4
- Compliant with SFF-8665 QSFP28 MSA
- Compliant with IEEE 802.3bm CAUI-4 Interface
- 4CH LWDM MUX / DEMUX design
- Data Rate 25.78125Gbps per Lane
- Built in quad Tx CDR and Rx CDR
- Hot Pluggable QSFP28 footprint
- O-Band LWDM EML transmitter
- SOA + PIN receiver
- Duplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8636
- Single 3.3V power supply
- Link distance 80km over SM fiber with KR4 FEC

1

- Link distance 60km over SM fiber without FEC
- Maximum Power consumption 6.5W
- RoHS compliant

Rev.03C3.30_20230725

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Storage Relative Humidity	RH	0	85	%
Supply Voltage	V _{CC3}	-0.5	+3.6	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temperature	Тор	0	-	+70	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Data Rate, per Lane	DR		25.78125		Gb/s
Data Rate Accuracy	$\Delta {\sf DR}$	-100		+100	ppm
Bit Error Rate	BER			5x10⁻⁵	
Supply Current	Icc			1900	mA
Power Consumption	Р			6.5	W
Transceiver Power-on Initialization Time				2000	ms
Control Input Voltage High	VIH	2.0		Vcc	V
Control Input Voltage Low	VIL	GND		0.8	V
Control Output Voltage High	Vон	2.0		Vcc	V
Control Output Voltage Low	Vol	GND		0.8	V

Rev.03C3.30_20230725

Transmitter Electro-optical Characteristics

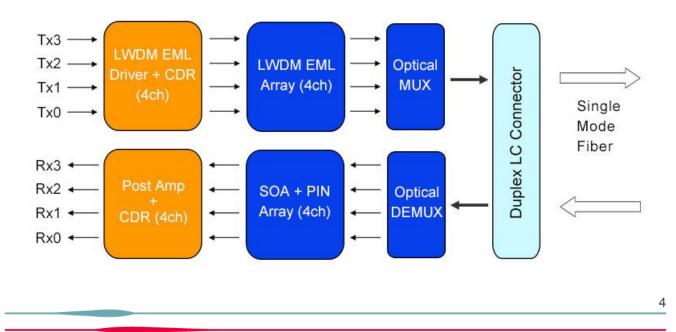
V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate, per Lane	DR		25.78125		Gb/s	
Total Average Optical Launch Power	TPavg	+8.0		+12.5	dBm	
Average Launch Power, per Lane	Pavg	+2.0		+6.5	dBm	
Optical Modulation Amplitude (OMA), per Lane	Рома	+3.0		+6.5	dBm	1
Difference in Launch Power between any two Lanes (OMA)	P _{TX-DIFF}			3.0	dB	
	λ_{L0}	1294.53	1295.56	1296.59	nm	
Optical Wavelength, each Lane	λ_{L1}	1299.02	1300.05	1301.09	nm	
	λ_{L2}	1303.54	1304.58	1305.63	nm	
	λ_{L3}	1308.09	1309.14	1310.19	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Optical Extinction Ratio	ER	6			dB	
Optical Eye Mask { X1, X2, X3, Y1, Y2, Y3 }		{ 0.25	, 0.4, 0.45, 0).25, 0.28, 0).4 }	2
Average Launch Power OFF, per Lane	Poff			-30	dBm	
Relative Intensity Noise (OMA)	RIN			-130	dB/Hz	
Optical Return Loss Tolerance	ORLT			20	dB	
Transmitter Reflectance	R _{TX}			-12	dB	
Input Differential Impedance	Zin	90	100	110	Ω	
Differential Data Input Voltage	VIN-PP			900	mVpp	

Note1: Even if the TDP<1dB, the OMA min must exceed the minimum value specified here. **Note2:** Hit ratio $5x10^{-5}$ hits per sample.

Rev.03C3.30_20230725

Receiver Electro-optical Characteristics

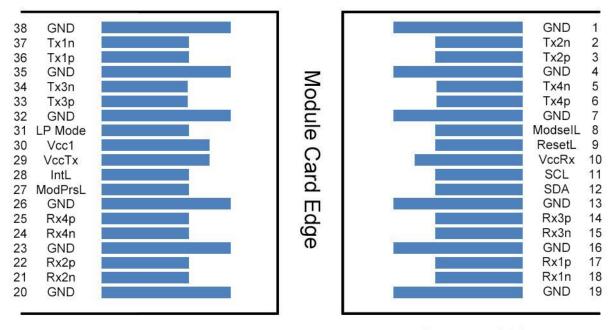

V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate, per Lane	DR		25.78125		Gb/s	
Damage Threshold, per Lane	Dтн	+6.5			dBm	1
Average Receive Power, per Lane	Prx-avg	-28		-7	dBm	
Receiver Power (OMA), per Lane	Prx-oma			-7	dBm	
Average Receiver Sensitivity, per Lane	SENAVG			-28	dBm	2
Receiver Reflectance	R _{RX}			-26	dB	
LOS De-Assert	LOSD			-29	dBm	
LOS Assert	LOSA	-40			dBm	
LOS Hysteresis	LOSHY	0.5			dB	
Receiver Electrical 3dB upper Cutoff Frequency, each Lane	Fcut			31	GHz	
Output Differential Impedance	Ζουτ	90	100	110	Ω	
Differential Data Output Voltage	Vout-pp			900	mVpp	

Note1: The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

Note2: Measured with conformance test signal at receiver input for BER= 5x10⁻⁵.

Transceiver Block Diagram



TEL+886-2-2898-3830 FAX+886-2-2898-3840 Sales@Ficer.com Link Fiber to Future

Pin Assignment

Rev.03C3.30_20230725

Top Side Viewed From Top Bottom Side Viewed From Bottom

Pin Description

Pin	Logic	Name	Function / Description	
1		GND	Module Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Module Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Module Ground	
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	

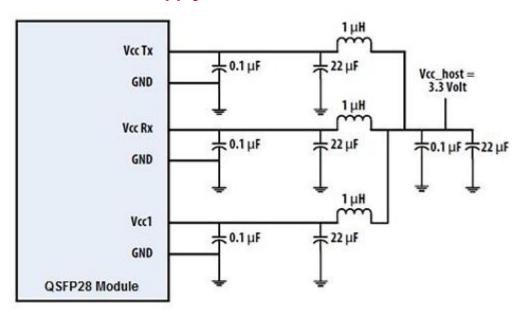
FICER Technology Co., Ltd. 明虹科技股份有限公司

2F, No.138, Daye Rd., Beitou Dist., Taipei City 11268, Taiwan www.Ficer.com

Rev.03C3.30_20230725

6

13		GND	Module Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Module Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Module Ground
20		GND	Module Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Module Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Module Ground
27	LVTLL-O	ModPrsL	Module Present
28	LVTLL-O	IntL	Interrupt
29		VccTx	+3.3V Power Supply Transmitter
30		Vcc1	+3.3V Power Supply
31	LVTLL-I	LPMode	Low Power Mode
32		GND	Module Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Module Ground


Note1: GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Power Supply Filter

Rev.03C3.30_20230725

Digital Diagnostic Functions

As defined by the QSFP28 MSA, Ficer's QSFP28 transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

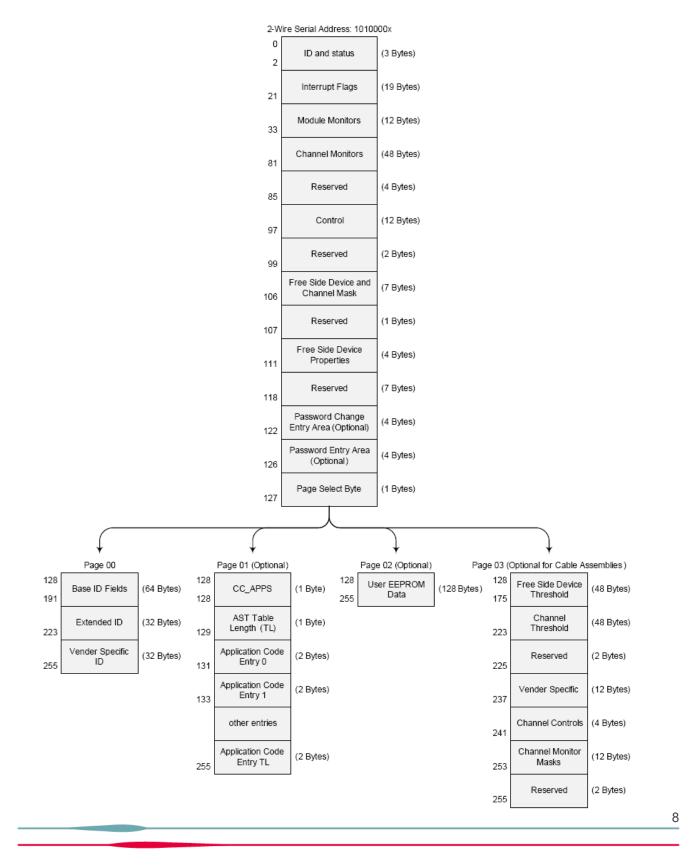
- Transceiver temperature
- Laser bias current (4-Channel)
- Transmitted optical power (4-Channel)
- Received optical power (4-Channel)
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP28 transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP28 transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8-bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the QSFP28 MSA Specification.

Digital Diagnostic Memory Map


7

FICER Technology Co., Ltd. 明虹科技股份有限公司

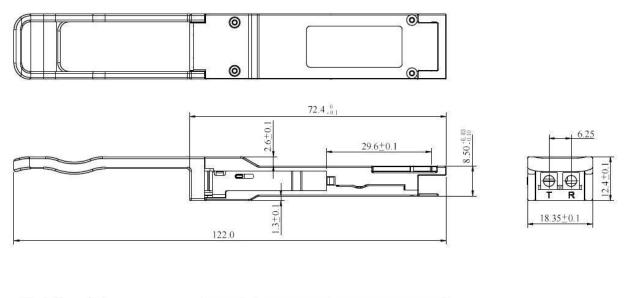
2F, No.138, Daye Rd., Beitou Dist., Taipei City 11268, Taiwan www.Ficer.com

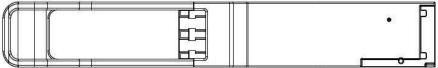
Rev.03C3.30_20230725

TEL+886-2-2898-3830

FAX+886-2-2898-3840

Sales@Ficer.com


Link Fiber to Future



Rev.03C3.30_20230725

9

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

Part No.	Тх	Rx	Link	DDM	Temp.
FQ28-K7-L13-80D	1295.56 nm 1300.05 nm 1304.58 nm 1309.14 nm	1295.56 nm 1300.05 nm 1304.58 nm 1309.14 nm	80km with KR4 FEC	Yes	0~70°C

Note1: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.